

Dr. Kenneth J. Pienta is the Donald S. Coffey Professor of Urology, Oncology, Pharmacology and Molecular Sciences, and Chemical and Biomolecular Engineering. He is the Director of Research at the Brady Urological Institute (https://www.hopkinsmedicine.org/brady-urology-institute/) and co-Director of the Cancer Ecology

Center (https://cancerecology.com/). Dr. Pienta received his undergraduate and medical degrees from Johns Hopkins. After an internship and residency at the University of Chicago, he did his Oncology fellowship at Johns Hopkins and was a post-doctoral fellow in the Coffey lab. He was on faculty at Wayne State University (1991-1994) and at the University of Michigan (1994-2013). Dr. Pienta is a physician-scientist who applies ecological principles to drive discovery as well as take care of patients. He is the author/coauthor of almost 800 articles with 55,000 citations, HI=115

Selected publications:

Bukkuri A, **Pienta KJ**, Austin RH, Hammarlund EU, Amend SR, Brown JS. A life history model of the ecological and evolutionary dynamics of polyaneuploid cancer cells. Sci Rep. 2022 Aug 12;12(1):13713. doi: 10.1038/s41598-022-18137-4.

Loftus LV, Amend SR, **Pienta KJ**. Interplay between Cell Death and Cell Proliferation Reveals New Strategies for Cancer Therapy. Int J Mol Sci. 2022 Apr 25;23(9):4723. doi: 10.3390/ijms23094723.

Pienta KJ, Hammarlund EU, Brown JS, Amend SR, Axelrod RM. Cancer recurrence and lethality are enabled by enhanced survival and reversible cell cycle arrest of polyaneuploid cells. Proc Natl Acad Sci U S A. 2021 Feb 16;118(7): e2020838118. doi: 10.1073/pnas.2020838118.

Pienta KJ, Hammarlund EU, Austin RH, Axelrod R, Brown JS, Amend SR. Cancer cells employ an evolutionarily conserved polyploidization program to resist therapy. Semin Cancer Biol. 2022 Jun; 81:145-159. doi: 10.1016/j.semcancer.2020.11.016.

Truskowski K, Amend SR, **Pienta KJ**. Dormant cancer cells: programmed quiescence, senescence, or both? Cancer Metastasis Rev. 2023 Jan 4. doi: 10.1007/s10555-022-10073-z.